Global evolution of solid matter in turbulent protoplanetary disks
نویسندگان
چکیده
Tile problem of planctary system formation and its subsequent character can only be addressed by studying the global evolution of solid material entrained in gaseous protoplanetary disks. We start to investigate this problem by considering the space-time development of aerodynamic forces that cause solid particles to dccouple from the gas. The aim of this work is to demonstrate that only the smallest particles are attached to the gas, or that the radial distribution of the solid matter has no momentary relation to the radial distribution of the gas. We present the illustrative example wherein a gaseous disk of 0.245 3.,fc_and angular momentum of 5.6 × 1052 gcm 2 s-1 is allowed to evoh'e due to turbulent viscosity characterized by either c_ = 10-2 or o, = 10-3. The motion of solid particles suspended in a viscously evolving gaseous disk is calculated numerically for particles of different sizes. In addition we calculate the global evolution of single-sized, noncoagulating particles. We find that particles smaller than 0.1 cm move with the gas; larger particles have significant radial velocities relative to the gas. Particles larger then 0.I cm but smaller than 10 3 cm have inward radial velocities much larger than the gas, whereas particles larger than 104 cm have inward velocities much smaller than the gas. A significant difference in the form of the radial distribution of solids and the gas develops with time. It is the radial distribution of solids, rather than the gas, that determines the character of an emerging planetary system.
منابع مشابه
Gas-phase CO in protoplanetary disks: A challenge for turbulent mixing
This is the first paper in a series where we study the influence of turbulent diffusion and advective transport on the chemical evolution of protoplanetary disks, using a 2D flared disk model and a 2D mixing gas-grain chemical code with surface reactions. A first interesting result concerns the abundance of gasphase CO in the outer regions of protoplanetary disks. In this Letter we argue that t...
متن کاملGlobal evolution of solid matter in turbulent protoplanetary disks II. Development of icy planetesimals
It is currently thought that planets around solar-type stars form by the accumulation of solid matter entrained in a gaseous protoplanetary disk.Wemodel part of this process starting from small particles suspended in a gaseous disk, and ending up with most of the solid material aggregated into 1–10–km– sized planetesimals. The radial distribution of solid material circumnavigating a star in the...
متن کاملParticle Pile-ups and Planetesimal Formation
Solid particles in protoplanetary disks that are sufficiently super-solar in metallicity overcome turbulence generated by vertical shear to gravitationally condense into planetesimals. Super-solar metallicities result if solid particles pile up as they migrate starward due to aerodynamic drag. Previous analyses of aerodynamic drift rates that account for mean flow differences between gas and pa...
متن کاملPlanetesimal and Protoplanet Dynamics in a Turbulent Protoplanetary Disk: Ideal Unstratified Disks
The dynamics of planetesimals and planetary cores may be strongly influenced by density perturbations due to magnetorotational turbulence in their natal protoplanetary gas disks. Using the local shearing box approximation, we perform numerical simulations of planetesimals moving as massless particles in a turbulent, magnetized, unstratified gas disk. Our fiducial disk model has turbulent accret...
متن کاملDust Size Growth and Settling in a Protoplanetary Disk
We have studied dust evolution in a quiescent or turbulent protoplanetary disk by numerically solving coagulation equation for settling dust particles, using the minimum mass solar nebular model. As a result, if we assume an ideally quiescent disk, the dust particles settle toward the disk midplane to form a gravitationally unstable layer within 2× 103–4× 10yr at 1–30 AU, which is in good agree...
متن کامل